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An Approximation for f :O e dt, x >0, p real

By A. R. DiDonato

2
Abstract. A new approximation is given for [ : e—1/24P dt, x > 0, p real, which ex-
tends an earlier approximation of Boyd’s for p = 0.

Introduction. In [2] Boyd gives
M g0x) = 4/[3x +/x? + 8]

as an approximation for

[0) F(x) = [1/Z()] f: Z(f)dt, x>0,
where

3 Z(x) = exp(—x*/2).

It can be shown g(x) > F(x), and in fact

(€)) gx) - Fx)=2x""7+ 0(x~%), (x — ).

For x > ¢ = (4 — m)/\/n(m — 2) = 453, g(x) serves as a much better approximation to
F(x) than the well-known estimate

%) k() =2/[x ++/x% + 8/n], [1,p.298].
More specifically, it is easy to conclude that

(6) Fx)<gx)< h(x), x>c,

as Table I below indicates.

TABLE I
x F(x) g(x) h(x)
0.5 .8763645 9148542 9206969
10 6556795 6666667 6936713
2.0 4213692 4226497 4387303
5.0 .1928081 .1928216 1951510
9.5 .1041337 .1041338 .1045309

Our objective is to generalize Boyd’s result to the function
™ F(p, x)= Y(p, x)/Z(p, %),
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where
= ® Z(p, t) dt,
®) Y(p, x) fx (p, 1)
©) Z(p, x) =xPexp(—x2/2), x>0, preal

The corresponding approximation for F(p, x) is given by

(10) g(p, x) = 4x/[3(x? — p) + V(x* - p)* + 8(x* + p)],

which reduces to (1) for p = 0, and also is exact for p = 1, i.e., g(1, x) = F(1, x).
For fixed p, it improves as x increases and, depending on the value of p, it bounds F
either from above or below for all x > x,,. In particular,

(@) p<0, x2>x2 =-p = &(p, x) > F(p, x)),
an {®) 0<p<i, 22xl=p+2p*?  (=g(p x)>F(p, x)*,
©) p=1, x2>x2 =p+2p*3 (=g(p, x) <F(p, x)).

By expanding (10) in powers of 1/x and subsequently taking the difference of the
leading terms with those of the asymptotic series for F(p, x),

12) FQ, x)E;lc- [l +px_ ')\ Ak ) B °]’ (x — =),

x4
we find

2(1 p) 2(1 — p)4p — 19)
x9

(13) g(p, x) - F(p. x) = +0G71), (x> 09 ¥

Table II is given to show the comparison between F(p, x) and g(p, x) for some
selected values of p and x. The asterisked x values are close approximates of X, given
in (11).

Before deriving (10), we note that an approximation, g,(p, x), for F can also be
obtained from the first two terms of the continued fraction expansion for the incom-
plete gamma function, namely

x2+2

(14) & (p, x) = X243 _p)

[4, p. 356].

The relationship between F and the incomplete gamma function is given below in (29).
From (12) and (14) one obtains

(15)  g(p.x)-F(p.x)=2(p — D(p - )T +0x~%), (x— ).

A comparison with (13) shows that at large x, g, is better than g for 2 <p < 4, but it
is not as good otherwise, especially at large |pl.

*For 0 < p < 1, computer results indicate 3p as a sharper estimate for xfn

**Since the algebra is somewhat lengthy, the first two terms on the right-hand side of (12)
and (13) were also computed by A. Morris, as well as three additional ones, using his algebraic com-
puter program, “FLAP,” [3].
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p X F(p.x) g(p.x) p b F(p.x) g(p.x)
-100 1 0099980 | .0100000 -40 1 .0249672 0250000
5 .0401906 | .0401948 6.3" .0790482 .0790602
10" .0499988 | .0500000 8 .0767483 0767535
13 .0482807 | .0482812 12 .0650181 .0050189
-10 75 .0772836 | .0795903 -4 1 .2185598 .2500000
3" .1579338 | .1583358 o .2473026 .2500000
8 .1070674 | .1070723 5 1683551 1684001
12 .0774887 [ .0774891 10 .0953216 0953223
-1 1" 4614553 | .5000000 -8 .90* 5032524 5568742
2 3613286 | .3636364 2 3721367 3742823
5 .1860899 | .1861126 5 1873965 .1874189
10 .0980755 | .0980759 10 .0982647 0982650
-4 64" 6399281 7794144 2 S 1.018194 9765504
.80 .6074871 6594522 a7t .8242077 8262394
1 5652979 | .5882353 1 7091266 7142857
5 .1900660 | .1900842 3 .3099818 3101590
10 .0986452 | .0986454 7 .1406465 .1406479
6 8 9957427 | 9786360 | 1.4 1.4 8090514 | 8122124
1.35* | .6549141 | .6556292 1.98* | .5444214 | 5441366
3 3212850 | 3213781 4 2557314 | 2557085
7 1417435 | 1417442 8 1257627 | 1257624
3 2 7500000 | .7583057 9 3 9344615 1.000000
2.68" 4770367 | .4765579 42" 3920753 .3917566
4 .2812500 | .2811137 7 1692794 1692546
8 1289062 | .1289046 10 .1084996 .1084977
19 S 5265147 | .5305361 39 7 4765338 4798227
577" .3404467 .3402561 7.87" .2989724 2988727
8 1712925 | .1712553 11 1311763 1311612
10 1213368 | .1213307 20 .0552170 0552169
99 11 3867447 | .3881067 199 15 4202082 4231882
11.9* 2519044 | 2518658 16.3* 2245087 2244941
15 1167631 1167549 2 .0980926 .0980889
20 .0660856 | .0660851 30 .0427010 .0427009

Derivation of (10) and (11). We now derive (10) treating 11(a), (b) and (c)
separately. The final results depend on the function H(p, x) given below by (19) or

(20).
Let

(16)

17
(18)
where
(19)
or

(20)

f(p, x) = 1/F(p, x) = Z(p, x)/Y(p, x).
For brevity, denote f(p, x) by f, 8f/dx by f', 8%f/ox? by f". Then

f'=f¢+px —x) = fu,
f"=fH, H=H(p, x),

usf+phx-x,

H=2f%+3(p/x — x)f + (p/x —x)* — 1 —p/x?,

H=2u?+@x-ppyu—1-px?=u+u.

We shall use the following properties of H, which are easily found:
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o, p <O,
4 — m)m, =0,
@1) im H(px)={C " P
x->0+ — oo, 0 <p < 1,
o, p> 1.
Also
22 H(p, x) 2201 - p)x*,  (x — o),

which follows after some tedious algebra from (12) and (19).
For p <0, we have

(23) u=f+p/x-x>0, x=s=+-p

Indeed, let S =uY = Z — (x — p/x)Y, so that 3S/ax < 0 for x2 > -p, and S = Z/x?
(x — ). Hence S > 0 for x? > —p, and since Y is always positive (23) follows.

From this result, with (21) and (22), we have H > 0 for x € [s, ). In fact, if
this were not the case, there would exist a point { € (s, *°) for which H(p, ¢) = 0,
H'(p, £) > 0. But this is impossible since

(24) H'(p, x) = (f + 2u)H(p, x) — 2u® + 2p)x3

is negative if H = 0, u > 0, and p < 0.
Thus factoring H, as given in (19),

(25) H=(-n,)(f-n)>0, x*>-p p<o,
we get (10) with 11(a) from f — n, > 0, where
26) 1:(P, X) = [3(x — p/x) £ /(x — p/x)? + 8(1 + p/x2)] /4.

Now consider the case p > 1. From (21) and (22) we know H has at least one
positive zero such that H'(p, Xo) <0, where x,, denotes the largest such zero. More-
over, if z denotes the largest zero of H with H'(p, z) > 0, then z < xo. Thus H<O0
for all x > x,. In order to get an estimate, X Of x4 we have from (24) and H'(p, Xg)
<0, that

27 u(p, Xo) >PI/"'/?‘O, p

\%

1.

Inequality 11(c) now follows directly by using (27) and f(p, Xo) =n,(D, x,) in the
expression for u given in (17).

When 0 <p <1, the analysis used to obtain 11(b) is similar to that for p> 1.
First, it is shown (27) holds with the inequality reversed. Then proceeding as above,
one obtains 11(b) with H(p, x) > 0 for all x > X, > Xxq. The details are omitted.

Relation of F(p, x) to the Incomplete Gamma Function. The quantity F(p, x)
can be related to the normalized incomplete gamma function. Let

(28) r=102, y=x%/2,

so that
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(29) D P (P_’f_l )
F(p, x) ﬁe yPEr Sy ),
where
(30) '@, 2) Efw e r*ldr, z>0,areal
z

Thus, we have from (10) and (11)

4e~ 7Yy
(31 I'(a, ;V)=< )
3y—a+%l +V(y—a+%)? +4(y +a— %)

’

with
@ a<y, Y=y, =%h—a, (=gQa —1,v/2y)>T(@, »))
G2) {® %<a<1l, y>y,=a-%+@-17P, (>g—-1,v2))>T@y)),
© a>1, Y2y, Sa-%+@ )P, Ega-1,vV29)<T'@y) -

An Application. The function g(p, x) is particularly good for giving quick esti-
mates when p < 0 and F(p, x) cannot be evaluated by the usual recurrence relationship
on p. In addition, g can often be used to establish properties of F. For example, a
result not obtained easily by direct means, is to find, for p < 0, a good estimate to
x = X, where F(p, X) = F(p, x) for all x > 0. In fact, by using (10) and noting that
F'(p, X) = 0 requires F(p, X) = X/(X? - p), we find

(33) &b, X) — Fp, X) = -X(X* + p)/(X* - p)°.
Therefore, with X2 = —p,
G4 F(p, X) = F(p, V= p) = &(p, v/~ p) = 1/(2\/ = p).

Clearly (34) also implies that F(p, X) < 1/(24/=p). Thus, if p = —100, then

X =9.950374, \/~p = 10, F(—100, X) = .04999938, 1/(23/=p) = .05, g(p, X) =
.05000063. Even for the case of p = —4, where one does not expect the right side of
(33) to hold, we find X = 1.791507, v/=p = 2, F(-4, X) = 2484926, 1/(23/~p) = .250
g(—4, X) = .2524567.
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